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Voronoi analysis of the breakdown of order in spontaneous optical spot patterns

G. Schliecker and R. Neubecker*
Max-Planck-Institut fu¨r Physik Komplexer Systeme, No¨thnitzer Straße 38, 01187 Dresden, Germany

~Received 25 October 1999!

In a nonlinear optical single feedback system, patterns of bright spots evolve spontaneously. Making use of
the Voronoi construction, the breakdown of spatial order in experimental spot patterns under increase of the
pump laser intensity is analyzed. The spot density is found to increase with the pump intensity. Our analysis
shows that maximum order is maintained for a finite range of spot densities and starts to break down at a
clearly detectable threshold value. The enhanced disorder with increasing density contrasts the behavior of
simple hard-core systems. A separate analysis of the metrical properties of the Voronoi cells in ordered and
disordered regions yields remarkably smaller nearest-neighbor distances in disordered regions. This suggests
that the creation of new spots is a governing mechanism for the observed breakdown of order.

PACS number~s!: 05.65.1b, 64.70.Dv, 42.65.Sf, 68.90.1g
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The spontaneous evolution of spatiotemporal structure
in heated layers of liquids, oscillating spirals in chemic
reactions, or the onset of turbulence in flows can in princi
appear in any extended, open and nonlinear system@1#. A
large number of systems follow a typical scenario with
least two instabilities: under an increase of the external c
trol parameter, commonly the power flow through the s
tem, from a steady and uniform state first well-ordered, s
tionary and spatially periodic patterns evolve spontaneou
Then, under further increase of the control parameter, sp
order breaks down and the structures become dynamic.

While there are mathematical tools to treat these syst
close to the first threshold@1#, far above the threshold in th
complex, dynamic regime no analytic approaches exist
this region, a quantitative analysis of the states can be
formed only by means of empirical and statistical metho
The methods of stochastic geometry are known to form
reliable and efficient tool for the characterization of ord
disorder transitions in various planar systems@2,3#. Here, we
apply for the first time the Voronoi construction to spot p
terns in a nonlinear optical system, in order to gain a dee
insight into evolution of disorder and the properties of t
states in the complex, dynamic regime.

The optical system under consideration belongs to
class of thesingle-feedbacksystems@4#. In such setups, a
uniform pump laser beam with a broad cross section
modulated by a nonlinear medium, freely propagates thro
a feedback loop and is then fed back to the nonlinear
dium. The combination of nonlinearity and diffractional sp
tial coupling, resulting from the propagation, leads to
modulational instability. As consequence, spatial patte
emerge in the transverse cross section of the light beam

In our case, a saturable Kerr-type nonlinearity is provid
by a liquid crystal light valve~LCLV !, which allows one to
observe large aspect-ratio patterns@5–7#. The LCLV is a
multilayer device with a phase-modulating reflective rea
out and an absorptive write side. The spatial read-out ph
profile is determined by the light intensity distribution at t
write side of the LCLV.

*Present address: Institut fu¨r Angewandte Physik, Hochschulst
6, 64289 Darmstadt, Germany.
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Figure 1 shows a simplified diagram of the experimen
setup. A laser beam is phase-modulated and reflected by
LCLV read-out side and then fed back to the LCLV wri
side, after propagation over the lengthL. In the experiment,
the intensity distribution at the LCLV write side is recorde
Above a threshold intensity ofI p'50 mW/cm2, the initially
uniform cross section of the beam breaks up into pattern
bright spots, typically in a hexagonal arrangement.

The theoretical description of the system@7# is based on
two coupled partial differential equations. A quantitative r
lation between the induced phase shift of the reflected be
F(x,y,t) and the modulating intensityI w(x,y,t) at the write
side of the LCLV is given by

tḞ2 l 2¹'
2 F1F5

Fmax

cosh2S 11k r I w

11ksI w
V̂ext2V̂thD , ~1!

with the transversal spatial coordinatesx andy and the time
t. The temporal response and the spatial coupling within
LCLV are included in lowest order with a relaxation tim
t'50 ms and an effective diffusion lengthl'30 mm. In
our system, diffusional spatial coupling does not cause
spatial instability. The right-hand side of Eq.~1! describes
the nonlinear, saturable response of the induced phase o

FIG. 1. Schematic diagram of the setup: the expanded la
beam is reflected at the LCLV read-out side, thereby acquirin
phase shift profile and is then fed back to the write side with
beam splitter~BS! and the mirrors M. A spatial low-pass filte
~lensesL, apertureP! restricts the active wave numbers to the low
est unstable band.
R997 ©2000 The American Physical Society
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write intensityI w . V̂ext is the scaled external supply voltag
of the LCLV, V̂th describes an internal threshold, andk r ,ks
are device specific parameters. Here, we are concerned
a nonlinearity of self-focusing type (dF/dIw.0) only @7,9#.

Due to the propagation, the spatial modulation of t
phase shift is transformed to the intensity profile at the w
side of the LCLV,

I w5uexp@2 i ~L/2k0!¹'
2 # exp~2 iF!u2I p . ~2!

Equation~2! is based on the paraxial approximation of t
wave equation, with the diffraction described by the opera
exp(2iL/2k0¹'

2 ), where ¹'
2 5]2/]x21]2/]y2. The propa-

gation length isL andK0 is the wave number of the light.
Inserting Eq.~2! into Eq. ~1!, we end up with a single

nonlinear partial differential equation. A linear stabili
analysis of this model@7#, predicts a critical transverse wav
numberkc;AL/k0 to become unstable above the thresho
determining the typical pattern length scale. Far above
threshold, the single critical wave number broadens to a c
tinuous band of active wave numbers.

Object of our analysis are the experimental spot patte
obtained for different values of the pump laser intensityI p .
If the system is not driven into saturation, just above thre
old stationary patterns of hexagonally arranged bright sp
develop. Under further increase of the pump laser inten
the spots begin to move, and the initial order breaks do
The pump intensities considered here range from a value
above the threshold of pattern formationI th

(1) to an eight
times larger value ofI rel[I p /I th

(1)<8.
Up to this value, individual spots of approximately th

same size are identifiable, which allows to reduce the c
tinuous intensity distributions to the coordinates of a spa
arrangement of individual spots. Typical snapshots of exp
mental spot patterns are shown in Fig. 2. We define the
cations of the spots as the centers of mass of islands of p
exceeding a certain threshold value. For each fixed pu
value, the spot positions of snapshots at ten different tim
have been determined. For the dynamic patterns, the pe
between two snapshots is chosen larger than the typical
poral correlation time. The following quantities obtained f
a fixed pump value are averages over these ten realizat

The number of spots is not a conserved quantity. Part
larly in the dynamical, disordered regime, spots are f
quently created and annihilated, as already described ea
for numerical simulations of a similar system@4#. As a first

FIG. 2. Snapshots of the experimental intensity distribution
the LCLV for I rel53.6 ~lhs! andI rel55.16~rhs!. The typical diam-
eter of such a pattern is 6 mm.
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measure, we have determined the average number of s
N, for each fixed pump intensityI rel . Figure 3 shows an
almost monotonic increase ofN(I rel), reflecting an increase
of the spot density since the constant cross section of
laser beam fixes the active area. Correspondingly, the typ
spot distances decrease. Although the predictions of the
ear stability analysis are questionable far above thresh
this change in the typical length scale is approximat
within the broadening of the unstable wavenumber band

For the geometrical analysis of the spot patterns, meth
are needed which apply to systems with a finite number
objects in a spatially restricted region. One tool, well-know
from the characterization of melting processes, is the ca
lation of pair and triple distribution functions. This has be
applied previously to similar experimental patterns for a d
focusing nonlinearity, yielding a threshold behavior from o
der to disorder@5#. As we will show here, deeper insight ca
be gained from the Voronoi construction@10# due to the
diagnostic ability of the Voronoi cells for the local and glo
bal spatial arrangements of the spots. A Voronoi cell is
signed to each spot containing all points in the plane clo
to the center of the generating spot than to any other s
center. The Voronoi construction has also found wide ap
cation in the characterization of the two-dimensional melt
@2,3#. In these systems, the perfectly ordered structure is
tained at highest packing fraction, characterized by Voro
cells which are regular hexagons. With increasing disord
cells with smaller and larger numbers of edges~defects! ap-
pear, whereas the average number of sides of a cell is alw
six @10#. Hence, the construction of Voronoi tessellatio
allows to compare the degrees of order in the spot patte
with those from completely different pattern forming sy
tems, as, e.g., the cellular structures in Be´nard–Marangoni
convections@11#.

We have generated the Voronoi tessellations of the s
positions for each snapshot separately. In order to av
boundary effects, cells at the boundary of the active a
have not been taken into account. Parts of two typi
Voronoi tessellations generated from experimental spot
terns are shown in Fig. 4. In the tessellation obtained for
lower relative pump intensity~a!, large domains of hexago
nally arranged spots can be detected. These domains s
with increasing pump intensity~b! due to the generation o
disordered regions with smaller cells. Typical arrangeme
of dislocations, as observed in crystals at the melting tra
tion @2,3# or in the Bénard-Marangoni cellular structure
@11#, are hard to find in these tessellations in Fig. 4.

t

FIG. 3. Left: Average number of spots (1) and the number of
six-sided Voronoi cellsN6 (L) plotted vs the relative pump inten
sity I rel . Right: Fractionp6 of six-sided cells (s), plotted against
the corresponding average number of spots, together withp6

hex ~* !,
characterizing the presence of hexagonal domains.
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FIG. 4. Parts of the Voronoi tessellations generated by the spot positions of two snapshots, taken at relative pump intensitiesI rel53.6 ~a!
and I rel55.16 ~b!. The circles mark spots, appearing on the vertices of a local regular grid.
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For the spot patterns, the calculated average numbe
six-sided cells,N6, is represented in Fig. 3, left, as a functio
of the pump intensity. Perfect order is never achieved:N6
,N for all pump intensities. We assign the lack of perfe
order even at low pump intensities to experimental imperf
tions like the presence of spatial inhomogeneities of the
tical nonlinearity.

A commonly used measure of the degree of order is
relative frequency of six-sided cells,p65N6 /N. The picture
becomes clearer, plotting its dependence on the average
number~Fig. 3, right!. For low pump intensities, the platea
of high values ofp6 is maintained under creation of ne
spots. At N'110, however, the picture changes: the e
hanced density yields a decrease ofN6 leading to a remark-
able decay ofp6, showing evidence for a distinct thresho
for the onset of disorder. The corresponding pump value
I rel'4.3 agrees with findings from entirely different a
proaches@7,8#. Our result differs completely from simpl
hard-core systems, which tend to order with increasing d
sity.

Furthermore, the fraction of defects in the spot patter
even at low pump intensities, is remarkably larger than
most other systems at the order-disorder transition@2,3,11#.
For Voronoi tessellations of simple hard-disk systems e
@3#, all values ofp6, obtained here, would correspond excl
sively to the fluid phase which has a minimal value
p6

RVT50.29 for an uncorrelated gas at vanishing density.
Due to the relatively high fraction of defects, it is n

clear how much the six-sided cells are gathered in dom
with locally high hexagonal order, i.e., whetherp6 is still a
reliable measure for the degree of spatial order. A sim
estimate of the fraction of spots arranged in hexagonally
dered domains can be performed by the measurement o
relative frequency of six-sided cells, surrounded by at le
four six–sided cells,p6

hex. The quantitative behavior o
p6

hex, represented in the right-hand panel of Fig. 3, clea
shows that the decrease ofp6 is caused by the decrease
p6

hex and thus is in fact a consequence of the breakdown
hexagonal domains. We conclude that a regular hexagon
of
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tern can bear only a certain number of~additional! spots.
Above a critical value of the spot density, this spatial ord
breaks down.

In order to gain a better understanding of the unus
density dependence of the breakdown of order in the s
patterns, the metrical properties of the cells are conside
now. One great advantage of the Voronoi construction is t
it enables us to distinguish spots in locally ordered fro
those in disordered regions. Whereas the distribution of a
of the Voronoi cells yields no further significant informatio
~not shown here!, additional information can be gained from
the statistics of the areas of the cells’ largest inscrib
circles, centered at the spot positions. The circle areaAc is
simply related to the nearest–neighbor distanced: Ac

5p(d/2)2. In an ordered system, the distribution of circ
areas exhibits a narrow peak, whereas for a random distr
tion of points, it decays exponentially. In Fig. 5, the hist
grams of the circle areasAc are shown for three differen
relative pump intensities. We have distinguished the con
butions from cells belonging to hexagonal domains - as
fined above~black bars! and those from all other cells~white
bars!.

At a relative pump intensityI rel53.6, whenp6 has its
maximum value,N(Ac) exhibits a strong peak at large va
ues of Ac'40 a.u., dominated by the cells from ordere
hexagonal domains. Just above the critical pump intensit

FIG. 5. Average number of cells with circle areaAc ~in arbitrary
units!. Black bars represent the contribution from hexagons with
least four six-sided neighbors. White bars represent the contr
tions from all other cells.
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I rel55.16, a distinct second peak at much smaller areasAc

'20 a.u. builds up, and the distribution becomes bimod
coinciding with the breakdown of order, we observe the
pearance of a new type of spots with small nearest–neigh
distances. In the disordered regime, atI rel57.64, the right
peak inN(Ac) as well as the hexagonal domains have dis
peared almost completely, whereas for small circle are
N(Ac) shows a strongly enhanced weight. This result a
indicates the existence of a distinct minimum distance
tween spots. Remarkably smaller nearest-neighbor dista
with increasing disorder have also been reported for the
pological defect structures in a chemical reaction-diffus
system at the transition from rotating spirals to spati
temporal chaos@12#.

Our results lead to the conjecture that in the experime
case with increasing density, spots are preferably created
tween hexagonally ordered spots. This mechanism would
plain the coincidence of the breakdown of hexagonal
mains and the strongly enhanced weight at smaller nea
neighbor distances. In fact, typical examples of sp
appearing on vertices of quite regular tessellations or at
locations of the hexagonal grid can be detected in
Voronoi diagrams represented in Fig. 4. We have mar
these cells by large circles centered at the positions of
additional spots. The shape of these cells appears triang
their area simply seems to cut parts of the three neighbo
cells.

The competition of two physical mechanisms, which go
ern the formation of the spot patterns, may explain our
servations. On one hand, the Talbot effect describes the e
repetition of a spatially periodic wave front after a certa
r-
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propagation length. This happens, while the light wave in
feedback system propagates from the LCLV read-out to
write side, supporting the evolution of well ordered, period
patterns@9#. On the other hand, a single spot can be crea
by a self-focusing effect. A bright spot belongs to a peak
the induced phaseF(x,y), representing a small induce
lens. This lens focuses the pump light onto its position on
LCLV write side, such in turn supporting the phase pe
The latter can in principle happen, wherever enough pu
intensity is supplied, i.e., also between spots of an exis
hexagonal pattern. Consequently, self-focusing will beco
more dominant with increasing pump intensity. Also, th
local effect is probably promoted by spatial inhomogeneiti
A competition appears, since the Talbot effect disfavors s
deviations from an ideal periodic pattern.

The relation between spatial order and dynamics so fa
not clear. One possibility would be that when newly form
spots cannot be integrated into a regular pattern, the inter
ing spots will not come to rest. They keep moving, trying
keep their mutual minimal distance.

To conclude, the clearly detectable breakdown of orde
optical spot patterns neither resembles a melting process
the order-disorder transition in Be´nard-Marangoni structures
Making use of an extension of the classical Voronoi analy
we find strong evidence that the creation of spots betw
spots in originally ordered regions in combination with t
irregular motion destroys the order.

The experiments were performed by Bernd Thu¨ring at
the Institute of Applied Physics at the Darmstadt Univers
of Technology. R.N. would like to thank M. Ba¨r for his
support and the Max-Planck-Gesellschaft for the opportun
to work at the MPI-PKS in Dresden.
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